Quick Start
Get up and running with Tool Agent in minutes.
Basic Setup
The framework allows you to set up an MCP server with predefined tools for specific domains. For example, to create a bioinformatics-focused MCP server:
python
from coala.mcp_api import mcp_api
mcp = mcp_api(host='0.0.0.0', port=8000)
mcp.add_tool('examples/ncbi_datasets_gene.cwl', 'ncbi_datasets_gene')
mcp.add_tool('examples/bcftools_view.cwl', 'bcftools_view', read_outs=False)
mcp.serve()This creates an MCP server that exposes two bioinformatics tools:
ncbi_datasets_gene: Retrieves gene metadata from NCBI datasetsbcftools_view: Subsets and filters VCF/BCF files
Start MCP Server
bash
python examples/bioinfo_question.pyConfigure MCP Client
Once the server is running, you can configure your MCP client (e.g., in Cursor) to connect to it:
json
{
"mcpServers": {
"coala": {
"url": "http://localhost:8000/mcp",
"transport": "streamable-http"
}
}
}Start Using
With this setup, you can ask the LLM natural language questions like:
- "Give me a summary about gene BRCA1"
- "Subset variants in the gene BRCA1 from the https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/clinvar.vcf.gz"
The LLM will automatically discover the available tools, understand their parameters, invoke the appropriate tool with the correct arguments, and present the results in a user-friendly format.
Next Steps
- Learn more about MCP Server setup
- Explore Function Call integration
- Check out use cases